5,825 research outputs found

    Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Get PDF
    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools

    Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring

    Get PDF
    We show the potential use of a single photodetector for multichannel pulse monitoring. Two-photon absorption in a microcavity structure is used as the nonlinear optical technique for pulse monitoring. Angle tuning of the device allows the resonance to be tuned. For the device studied here that is optimized for 2-ps pulses, a possible tuning range of 55 nm is shown

    Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network

    Get PDF
    Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-division-multiplexed (WDM) and hybrid WDM/optical time-division-multiplexed networks

    Chromatic dispersion monitoring of 80-Gb/s OTDM data signal via two-photon absorption in a semiconductor microcavity

    Get PDF
    In this letter, a novel method of chromatic dispersion monitoring via two-photon absorption (TPA) is investigated. A specially designed semiconductor microcavity is employed as a TPA detector for monitoring data signals operating at rates up to 80Gb/s. As the microcavity has a wavelength-dependent response, a single device can be used to monitor multiple channels in a multiwavelength optical telecommunication syste

    The role of damping for the driven anharmonic quantum oscillator

    Full text link
    For the model of a linearly driven quantum anharmonic oscillator, the role of damping is investigated. We compare the position of the stable points in phase space obtained from a classical analysis to the result of a quantum mechanical analysis. The solution of the full master equation shows that the stable points behave qualitatively similar to the classical solution but with small modifications. Both the quantum effects and additional effects of temperature can be described by renormalizing the damping.Comment: 4 pages, 2 figures; submitted to "Journal of Physics: Conference Series

    A versatile ceramic capillary membrane reactor system for continuous enzyme-catalyzed hydrolysis

    Get PDF
    As an alternative to classical batch processes, enzyme-catalyzed hydrolysis can also be carried out continuously. To facilitate this, a continuous ceramic capillary membrane reactor system (CCCMRS) was developed which can be operated with various proteolytic enzymes immobilized on the porous ceramic capillary membranes. This system has several advantages over common batch processes regarding stability, reproducibility and controllability and can easily be adapted to optimal reaction conditions and individual preferences. Two exemplary applications utilizing the CCCMRS were carried out and investigated in long-term stability studies. In the first application the continuous enzymatic cleavage of human IgG into the antibody fragments Fab and Fc by immobilized papain was performed. A total volume of 22 mL of 1 mg mL-1 IgG-solution was enzymatically cleaved over a period of 33.3 h. The antibody cleavage products could be detected in an SEC-HPLC over the whole process time thus indicating long-term stability of the continuous hydrolysis process. The second application investigated the continuous digestion of pea and almond protein isolates by immobilized Alcalase resulting in the generation of a large variety of different peptides. This peptide fingerprint remains constant over a long period of time enabling fractionation and thus making the peptides accessible for further bioactivity studies in sufficient quantities. The constant peptide fingerprint could be shown in the RP-HPLC analysis for all 30 samples with a total volume of 29.7 mL collected over a period of 45 h
    • 

    corecore